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Unlike human brains, where various kinds of visual recognition tasks are carried
out with homogeneous neocortical circuits and a unified working mechanism,
existing visual recognition processors [1-4] rely on multiple algorithms and het-
erogeneous multicore architectures to accomplish their narrowly predefined
recognition tasks. In contrast, new brain-mimicking recognition algorithms have
been proposed recently [5,6]; we label such algorithms as belonging to the
Neocortical Computing (NC) model. Based on neuroscience findings, NC algo-
rithms model both the human brain’s static and dynamic visual recognition
streams (as shown in Fig. 28.2.1) through a series of unified matching/pooling
operations. The algorithms exhibit high visual recognition capability and perform
accurately on wide range of image/video recognition tasks. However, using the
NC model for real-time recognition involves several hundred GOPS of both
dense and sparse matrix calculations and requires over 1.5Tb/s inter-stage data
bandwidth – requirements that cannot be met efficiently on existing parallel
architectures.

In this paper, an NC processor for power-efficient real-time universal visual
recognition is proposed with following features: 1) A grey matter-like homoge-
neous many-core architecture with event-driven hybrid MIMD execution pro-
vides 1.0TOPS/W efficient acceleration for NC operations; 2) A white matter-like
Kautz NoC provides 2.3Tb/s throughput, fault/congestion avoidance and redun-
dancy-free multicast with 151Tb/s/W NoC power efficiency, which is 2.7-3.9×
higher than previous NoC-based visual recognition processors [1,2].

Figure 28.2.2 shows the system architecture of the Kautz NoC-based 36-core NC
processor, where the Kautz graph is implemented as an NoC. A Kautz graph can
be defined by its degree d and diameter k (both d and k are 3 in this work) and
has N = (d+1)dk-1 nodes (N = 36 cores in this work). The Kautz NoC provides
white matter-like routing capability – the maximum hop count between any 2
cores is less than logdN. Fault/congestion tolerance is also possible, as there are
d disjoint routing paths between any 2 cores. The grey matter-like homogeneous
cores support unified NC operations and provide programmability for various
recognition workloads. As the examples show in Fig. 28.2.2, such a combination
provides better scalability in terms of both application and architecture com-
pared to heterogeneous designs [1-4]. In this processor, each core is addressed
by a string of 3 base-4 numbers (i.e. 0/1/2/3; core addresses are 6b in total) and
adjacent numbers must be different (e.g. 122 is not a valid address). Each core
unidirectionally links to 3 other cores with left-shifted addresses. For example,
core 121 links to 210, 212 and 213, and receives links from 012, 212 and 312,
accordingly. Through this string-shifting procedure, a core can reach any other
core within 3 hops. All cores share a 32b address space, where each core is
addressed by the most significant 6b and has a 26b private address space. A
memory map, which defines the NC model, is loaded through two 64b system
buses as memory pages.

Figure 28.2.3 shows a block diagram of the NC core and its processing element
(PE). All computations are event-driven. Specifically, a core is only turned on
when a packet is received from another core through the NoC, or from the sys-
tem bus. Inactive cores and their components are clock gated. Arriving packets
are decoded into instructions and queued in the instruction FIFO. The instruction
dispatcher can issue up to 2 instructions to the PEs and paging memory units,
which cover the instruction’s target addresses. Page misses are handled by the
memory management unit (MMU) and DMA. In the proposed hybrid MIMD
mode, each of the 2 issued instructions can be either SIMD or SISD. Thus, the
core can flexibly switch between maximal acceleration for dense NC operations
(by SIMD) and minimal power consumption for sparse NC operations (by SISD).
With this scheme, a 10.3× recognition speed increase and a 4.43× power reduc-
tion can be achieved. Inside each PE, the 16b arithmetic unit can execute up to
4 operations per cycle, i.e. 1GOPS @ 250MHz. Successful instruction execution

will cause the resultant datum to be sent to the packet encoder, and fired to its
subsequent target addresses through NoC.

Figure 28.2.4 shows a block diagram of the Kautz NoC router and defines its
routing rules. The router performs distributed low-radix routing and all input
ports share one routing FIFO, which minimizes area and improves power effi-
ciency. All packets can be routed/multicast with the distributed routing string-
based procedure, as illustrated in Fig. 28.2.4. Information regarding faulty/con-
gested cores or NoC links can be used to correct routing strings and redirect
packets for fault/congestion avoidance with minimal hop count overhead. Based
on properties of a Kautz graph, the NC processor can sustain at least 2 faulty
cores/links. The proposed redundancy-free multicast scheme exploits the man-
ner in which cores are named by using disallowed name strings as group multi-
cast addresses without header redundancies (e.g. 122 (a disallowed name) can
be used to represent the cores 120, 121 and 123 as a subgroup, and 11X repre-
sents the entire core group 1). With this scheme, a distributed minimum span-
ning tree-based multicast is realized and provides a 1.75× recognition speed
increase. Compared to a non-fault-tolerant star-/tree-based NoC [1-3], the Kautz
NoC provides better efficiency (since centralized high-radix routers are
area/power hungry).  Compared to a fault-tolerant mesh-based NoC, the Kautz
has a smaller diameter and lower routing delay (3 hops vs. 10 hops and 16%
less average packet delay when running NC applications vs. a 6×6 mesh).

Figure 28.2.5 shows the single-step communication/execution scheme for this
chip, which is called push-based processing. Unlike conventional parallel
processors, where data are first placed on, then pulled from, caches multiple
times by multiple cores/threads, push-based processing passes data and
instructions as multicast packets through the energy-efficient Kautz NoC, which
mimics a neuron’s firing process, as shown in Fig. 28.2.1. According to each
datum’s associated NC operation, a SIMD or SISD instruction is executed. Zero-
valued datum and datum associated with zero-valued coefficients will not result
in any computation being performed, providing further power reductions.
Recognition speed is improved by 2.09×, and power is reduced by 1.38×, due to
push-based processing. The benefits of the features incorporated are summa-
rized in Fig. 28.2.5. Overall, 37.8× acceleration, and a 6.25× total power reduc-
tion are achieved.

Figure 28.2.6 offers a summary of the chip’s features. The NC processor is
implemented on a 4.5×4.5mm2 die using the TSMC 65nm CMOS process. A wide
range of visual recognition applications, including image (object/face/scene) and
video (action/sport), is supported and the chip works in real-time with high accu-
racy. Compared with other programmable visual recognition processors [1-4],
high power efficiencies are achieved. The die photo is shown in Fig. 28.2.7.
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Figure 28.2.1: NC model and supported applications of NC processor. Figure 28.2.2: NC processor architecture and scalability.

Figure 28.2.3: Event-driven NC core/PE architectures and execution modes.

Figure 28.2.5: Push-based processing mechanism and speed/power summary
of proposed features. Figure 28.2.6: Chip features and comparison.

Figure 28.2.4: Kautz NoC router architecture and routing/multicast flows.
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Figure 28.2.7: Chip micrograph.
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